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The problem of stationary heat convection in an infinitely long vertical flat channel 
with permeable boundaries is considered. The fluid is heated from below, so that in the 
channel there exists a constant temperature gradient. The fluid is blown Into the chan- 
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nel through one of its vertical boundaries, and is sucked away 
through the other creating a transverse flow through the layer 
at a constant velocity. An exact solution of the problem of 
superposition of vertical convection on the homogeneous trans- 

verse flow is derived. Two kinds of motion are analyzed, viz. 
a plane, and a space motion which along the layer boundary 
depend periodically on the horizontal coordinate. It is shown 

that plane convection motions are only possible up to a certain 
limit of the fluid blowing-in rate. 

1. A vertical plane layer of fluid is bounded by two paral- 
lel permeable planes z = f h (Fig. 1). A fluid is uniformly 
blown into the channel through one of its boundaries at con- 
stant velocity 8, and extracted through the other at the same 
uniform rate. 

The heating from below generates in the fluid a vertical 
temperature gradient a directed downwards. 

The equations of stationary convection are of the form [l] 
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(vo)v =-+VP+~AV+~WY (1.1) 

divv=O, vVT =xAT (W 

Here, v is the velocity, T the temperature, p the convection pressure, y the unit 
vector directed vertically upwards, and Y, x and p are the coefficients of kinematic 

viscosity, thermal diffusivity and thermal expansion, respectively. 

We shall begin by considering plane motions in which the velocity is defined as the 
superposition of a plane-parallel convection motion on the homogeneous transversal 

stream 
V J = vo, vy = 0, v, = v (z) (4 -3) 

where v,, = con&. 
We shall seek the expression of temperature and pressure distribution in the form 

T= -AZ + 0 (4, P = P (4 (j-4) 
where A = con& is the temperature vertical gradient (‘) . 

From Eqs. (1.1) and (1.2) we obtain 

d% 
x dxJ --v ,g+Av=0 (1.6) 

Here c’ is the constant of separation of variables which defines the convective motion 
gradient. 

We rewrite the equations of V (z) and 8 (5) in dimensionless form, introducing h, X / h 
and Ah as the units of velocity, length and temperature respectively, and obtain 

v” - $v’ + R0 = C, fY’--0’ + v = 0 (1.7) 

(here the prime denotes differentiation with respect to a dimensionless coordinate). 

Three dimensionless parameters, viz. the Rayleigh number R , the P&let number a, 
and the Prandtl number P appear in these equations 

The vertical (convection) velocity v vanishes at the boundary planes, while the tem- 

perature along these varies with height according to the linear law for gradient d. For 
the velocity u (z) and temperature 0 (x) we have the homogeneous boundary conditions 

v (+1) = 0, 8 (ztl) = 0 (1.8) 
Further to this we assume the convection stream to be closed, hence the additional 

condition for the convection velocity is: 1 

s vdx=O (1.9) 
-1 

The boundary value problem (1.7)-( 1.9) is an eigenvalue problem with a nontrivial 
solution existing for certain value of the Rayleigh number only. The characteristic values 
of R depend on two parameters, viz. the P&let and the Prandtl numbers. 

l ) Solutions of the form of (1.3) and (1.4) belong to the invariant group solutions (see 

PI 1. 



Stationary convection in a vertical channel 463 

2, Eliminating the unknown function v (5) from system (1.7). we obtain for 8 (z) 
one equation 

0 Iv-. 
( ) 
I+ $ e”+ +LR()z __C (2.1) 

The general solution of this equation is 

(I = Clerlx + Cserzx + CseQx + C4erdx + + (2.2) 

where ?i are the roots of the characteristic equation 

I-I-a(1+$)r3+;r2-R=O (2.3) 

The second of Eqs. (1.7) yields (2.4) 

u = C, (a - rl) rleTlz + Cz (a - r2) r2erzx + C3 (a - r3) rseTsx + C4 (a - ra) r4erdx 

By satisfying the boundary conditions (1.8) and the condition of the convection stream 

closure (1.9) we obtain a system of five homogeneous linear algebraic equations for the 
coefficients Ci and constant C of the pressure gradient. Equating the determinant of this 
system to zero, we obtain the characteristic relationship which may be written in the form 

(a - rr) (r2 - rs) (r2 - rJ (rs-rd) rl cth rl - (a - r2) (rt - r3) (rl - r4) x 

x (r3 -r4) r2 cth r, + (a - r3) ( r, - r2) (rl - r4) (r, - r4) r, cth r, - 

- (a - r4) (r, - r, ) (rl - r3) (r, - r3) r4 cth r, = 0 (2.5) 

This relationship represents the equation used for the determination of the spectrum 
of eigenvalues R depending on parameters a and P. In the limit case of a = 0 (ab- 
sence of fluid flow through the channel boundaries) the solution of this problem is known 
[3 and 41. In this case the boundary value problem (1.7)-(1.9) has both even and odd 
solutions relative to the layer axis of symmetry, and the spectrum of eigenvalues R is 

independent of the Prandtl number, and consists of two subsystems each corresponding to 
solutions of different parity. 

The eigenvalues corresponding to odd solutions are determined from the relationship 

sin R’la = 0, R = n4, 16a-t4, . . . P-6) 
while those corresponding to even solutions are determined from equations 

tg R’Ii = th R’fy R = 237.8, 2497, . . . (2.7) 

For a # 0 the solution of this problem has no definite parity. In order to find the 
eigenvalues it is convenient in this caseto rewrite Eq. (2.5) in the real form. The char- 
acteristic Eq. (2.3) has two real roots rl and r,, and two complex conjugate roots 
r3 = p + iq and r, = p - iq. Aft er transformation we obtain from (2.5) 

4 [(a-- ri) (Aa2 + q2) rl cth rt - (a - I;L) (lit2 + 4’) r2 cth r21 + 

+ 
rl- r: 

ch 2p - cos 2’1 {q (psh 2~ + q sin 2q) [(U-P) (/iI + -d2) - (A14 - q2)1 + 

-t(qsh2p-ppsin2q)[(a-~p)(A~A2-q~)+q~(~,+A~)l}=O GM) 

A, = r1-J), A,=r,-p 

Expression (2.8) is greatly simplified when P = 1. In this case the roots of Eq.(2.3) 
are readily found r1,2 = V2 (a * a>, r3.4 = V2 (a t @) 

a = Jf4R’I, + d,, p = 44RV2 - ~2 

The substitution of these values into (2.8) yields equation 
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psha + asinP ch a - ch a ch a-cos9 = 0 (2.9) 

Equation (2.8) with values of ri obtained from (2.3) was solved numerically for vari- 
ous values of the Prandtl number. The four lower branches of the R (a) spectrum for 
P = 0.5 and 1.5 are shown in Fig. 2. All branches emanate from values defined by for- 
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mulas (2.6) and (2.7) for a = 0 (absence of fluid 
blowing-In). The most outstanding characteristic of the 

obtained spectrum of eigenvalues is the pairwise closing 
of adjacent branches with increasing P&let number. 
Since a stationary convection motion in the configura- 
tion here considered (1.3) and (1.4) exists only for para- 
meter values corresponding to branches of the R (a) 
spectrum, the occurence of branch “closing” clearly 
means that at sufficiently high rates of blowing-in the 

considered convection pattern is not possible. 
Limit values of the P&let number g* are compara- 

tively small. 
Thus, for example, for P = 1 we have a, = 0.88. 

Therefore, in the region where a > a, a plane-parallel 
convection on the background of a homogeneous trans- 

versal stream is not possible. 
This, of course, does not mean that in the region 

u > a,, a nonconvective pattern of the transverse flow 
only is possible ; the existence of stationary convection 
of a different pattern in this region cannot be excluded. 

5. We shall now consider spatial vertical flows periodic along the horizontal coordi- 
nate y (the y-axis is normal to the drawing plane of Fig. 1). 

We shall look for the solution of the stationary convection equation in the form 

uX=vs, vv- - 0, v, = v (z) cos ky 

T = --Az+O(z)cosky, P = P (2) (3.1) 

Here k is the wave number defining the periodicity along y. 
Retaining the same units aS in Sect. 1 we obtain the following dimensionless equations: 

(u”-k%)-+v’+REI = 0 (3.2) 

(8” - k28) - uW + v = 0 (3.3) 

with boundary conditions 
2, (*I) = 0, 8 (&I) = 0 (3.4) 

(k is the dimensionless wave number). 
It should be noted that a motion of the form defined by (3.1) automatical’y ensures 

the fulfilment of the vertical stream closure condition due to the periodic dependance 
of the convection velocity on y; the additional condition (1.9) is now redundant. The 
constant of separation of variables in Eq. (3.2) bound with the pressure gradient is for 
the same reason equal to zero. 
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The homogeneous boundary value problem (3.2)-(3.4) leads to the characteristic 
equation defining the spectrum of eigenvalues R (a, P, k) 

(YU, + ~4 d (~1 - zi) sh G-3 - ~“q) - 

- (WJS + uau,) sh (rl - rtJ sh (r2 - r4) + 

+ (v4 + w.4 sh (rl - r4) sh (r2 - rs) = 0 (3.5) 
Here Ui = ri (a - ri) f k2, and rf are the roots of equation 

~-a(l+$)r~+~~-Z2k~)r~+ak”~l+~)r--(R-k4)=0 (3.6) 

In the particular case of P = i the spectrum is simple, From (3.6) we obtain 

r1,2 = 1/2 [o f -r/4 (RI/’ + k2) + a2], r3,4 = 1/s [a f i r/4 (RI” - ka) - aa I 

Substi~ting these values into (3.5) we obtain branches of the spectrum of & 
(3.7) 

R = VI4 (n2na + 4kZ + ~9)~~ n = 1, 2, 3,. . . (3.8) 

At the limit a = 0 (absence of percolation) we obtain the spectrum derived in [5]. 
It will be seen from formula (3.8) that in the case of spatial flows the characteristic 

values of fi increase monotonically with increasing P&let number ; “closures” of the 
R (a) levels are absent. Thus, the spectra of eigenvalues R differ substantially for plane 
and spatial motions. 

4, The problem analyzed in the foregoing is closely related to the problem of convec- 
tion stability in a fluid heated from below. If a homogeneous transverse flow is taken as 

the unperturbed state, and its stability with respect to convection induced by heating from 

below is apalyzed by the method of small perturbations, then for the amplitudes of small 
plane-parallel perturbations we obtain the boundary value problem (1. ?)-( 1.9), and for 
spatial perturbation we have problem (3.2)-(3.4). Thus the problem of stationary con- 
vection coincides with that of critical perturbation which, as is known, is typical for ver- 

tical channels. The eigenvalues Ii determined above have, with respect to stability of 
stationary transverse flow, also the significance of critical values. A transverse flow pas- 

sing through critical values of Ri (with increasing Rayleigh number) becomes unstable 

with respect to the next following vertical convection perturbation mode. Hence, curves 
of R (a) represent neutral lines of stationary perturbations. 

The closure of instability levels in the case of plane perturbations (Fig. 2) means that 
an increase of the transverse flow rate results in the establishment of complete stability. 
A similar closure of lines of the instability spectrum was described in [S] which dealt 
with the stability of stationary convection motion in an inclined layer. It was shown 
there that the closure of convection instability modes is under certain conditions accom- 
panied by the appearance of oscillatory instability. It would be reasonable to think that 
also in the problem considered above the stationary oscillation kind of motions is possi- 

ble. A complete clarification of this question necessitates the analysis of the nonstation- 
ary plane-parallel motions. Such an analysis is at present in progress. 

In the case of spatial perturbations the critical Rayleigh numbers increase monotoni- 
cally with increasing parameter a. The stability with respect to spatial perturbations 
increases, but an absolute stability is not reached. 

In concluding we note that the effect of transverse seepage of fluid on convection in 
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a horizontal layer heated from below had been previously investigated [7]. The trans- 
verse motion in a horizontal layer also leads to increased stability. The critical Rayleigh 
numbers increase monotonically with increasing Peclet number ; the closing of levels is 

in this case absent. There is thus a similarity with spatial perturbations in a vertical 
layer. However, when comparing the results of g] with those derived here, it should be 
stressed that there is no complete analogy between the two problems. In the case of the 

horizontal layer the transverse motion is directed across the unperturbed isotherms result- 

ing in the decrease of the unstably snratified layer thickness with increasing velocity of 

the transverse motion. The transverse motion in a vertical layer occurs, on the other 
hand, along the isotherms without distorting the temperature distribution equilibrium, 
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The dynamic equations of motion of the phases of a monodisperse system are formulated 

in the approximation of interpenetrating interacting continua, The energy transfer equa- 
tions of the pulsations of the phases in various directions are derived. These serve to 
close the above system of dynamic equations. 

We investigated the non-Newtonian hydromechanics of disperse systems in [l] and 
extended it to gas suspensions in r2.31. The approach used in [l- 33 is to some extent 
phenomenological, in that the random pulsations of the phases of a disperse system are 
dealt with on the basis of the equations of motion of the phases postulated a p r i or i 
as for continua, whereas strictly speaking such equations can only be posited without 

contradiction after such analysis. we now propose to eliminate the contradiction by 


